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Abstract

Supervised learning methods have been widely applied to ac-
tivity recognition. The prevalent success of existing methods,
however, has two crucial prerequisites: proper feature extrac-
tion and sufficient labeled training data. The former is im-
portant to differentiate activities, while the latter is crucial to
build a precise learning model. These two prerequisites have
become bottlenecks to make existing methods more practi-
cal. Most existing feature extraction methods highly depend
on domain knowledge, while labeled data requires intensive
human annotation effort. Therefore, in this paper, we propose
a novel method, named Distribution-based Semi-Supervised
Learning, to tackle the aforementioned limitations. The pro-
posed method is capable of automatically extracting powerful
features with no domain knowledge required, meanwhile, al-
leviating the heavy annotation effort through semi-supervised
learning. Specifically, we treat data stream of sensor readings
received in a period as a distribution, and map all training dis-
tributions, including labeled and unlabeled, into a reproduc-
ing kernel Hilbert space (RKHS) using the kernel mean em-
bedding technique. The RKHS is further altered by exploit-
ing the underlying geometry structure of the unlabeled distri-
butions. Finally, in the altered RKHS, a classifier is trained
with the labeled distributions. We conduct extensive experi-
ments on three public datasets to verify the effectiveness of
our method compared with state-of-the-art baselines.

Introduction

Human activity recognition has spurred a great deal of in-
terest with a wide spectrum of real-world applications, such
as security, personalized health monitoring and assisted liv-
ing (Janidarmian et al. 2017; Bulling, Blanke, and Schiele
2014; Lara and Labrador 2013; Frank, Mannor, and Precup
2010; Avci et al. 2010). Generally, there are two types of sce-
narios: wireless-sensor-based and video-based. In this work,
we focus on wireless-sensor-based activity recognition sce-
narios. In these scenarios, the data is often in the form of
a continuous multivariate time series from multiple sensors.
Therefore, the data needs to be divided into segments first,
each of which corresponding to a single label. Traditionally,
it requires intensive annotation effort with the starting and
ending times of each activity. Further, in order to increase
the expressiveness of data, feature extraction is commonly
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applied to each segment. Extracted features are then fed into
a classifier to recognize different activities. Note that feature
extraction and large amount of labeled training data are cru-
cial in the process, which are discussed in detail hereinafter.

It is well-known that good features can help to discrimi-
nate different classes of activities, by increasing the expres-
siveness of each activity. Generally, feature extraction ap-
proaches can be classified into two categories: statistical and
structural (Lara and Labrador 2013). Structural features take
into account the overall information of the data. For exam-
ple, SAX method transforms continuous data into discrete
symbolic strings (Lin et al. 2007); ECDF method preserves
the overall shape and spatial information of time series
data (Hammerla et al. 2013; Pl6tz, Hammerla, and Olivier
2011). Therefore, domain knowledge is highly required for
structural features. Statistical features, on the other hand,
aim to capture statistical information underlying each time-
series segment. There are also around twenty commonly
used handcrafted statistical features which are proven to be
beneficial practically, including orders of moments (mean,
variance, skewness, etc), median, etc (Janidarmian et al.
2017). Major limitations of statistical features are the flexi-
bility of handcrafted features and the involvement of domain
knowledge. Recently, Qian, Pan, and Miao (2018) proposed
the SMM 4 approach, which is capable of automatically
extracting all orders of moments as statistical features for
activity recognition.

Though SMM 4R is able to systematically extract pow-
erful statistical features, as a supervised learning based
method, it requires a plethora of labeled data for train-
ing. Note that label annotation on a large-scale dataset on
sensor readings is a costly process. Therefore, growing re-
search interests have been focused on exploring the trade-
off between label ambiguity and human annotation effort.
Some researchers focus on efficient annotation strategies to
reduce labeling effort, including offline and online strate-
gies (Stikic et al. 2011), such as experience sampling, self-
recall and video recording. There also exist several research
works applying semi-supervised learning (Zhu 2005) for ac-
tivity recognition by exploiting unlabeled data, which is sup-
posed to be easy to collect with very low cost, to learn
a precise classifier even with a limited number of labeled
data (Guan et al. 2007; Stikic, Larlus, and Schiele 2009;
Stikic et al. 2011). Most existing semi-supervised learning



methods adopt handcrafted features.

In this paper, we propose a novel semi-supervised learn-
ing method, namely Distribution-based Semi-Supervised
Learning (DSSL), to free the intensive effort on feature engi-
neering by using the kernel mean embedding technique for
distributions (Berlinet and Thomas-Agnan 2011). To elab-
orate, we treat data stream of sensor readings received in
a period as a probability distribution. Modeling input in-
stances as probability distribution is a new and promising
machine learning paradigm, and some methods have been
successfully developed in the supervised learning manner,
e.g., Support Measure Machines (SMMs) (Muandet et al.
2012; 2017). Recently, Qian, Pan, and Miao (2018) pro-
posed a framework based on SMMs for activity recogni-
tion, which is known as SMM 4. A major advantage of
SMM 4 r over other supervised learning methods for activ-
ity recognition is the capability of automatically extracting
all the orders of statistical moments as features to repre-
sent each input instance. Our proposed method, DSSL, is
an extension of SMM g in the semi-supervised learning
manner. Compared with SMM 4 and other supervised or
semi-supervised learning methods for activity recognition,
our contributions are 4-fold:

e Compared with other supervised or semi-supervised
learning methods, DSSL is able to represent each in-
stance, i.e., data stream of a period, using all the orders
of statistical moments implicitly and automatically, which

contains rich information to distinguish activities.

Compared with SMM 4, DSSL relaxes its full supervi-
sion assumption, and is able to exploit unlabeled instances
to learn an underlying data structure. With the learned
structure and a few labeled instances, DSSL is able to
learn a precise classifier for activity recognition.

Most existing works on learning with distributions are
supervised. To the best of our knowledge, DSSL is the
first attempt on semi-supervised learning with distribu-
tions. Moreover, we provide theoretical analysis proving
that DSSL is valid for semi-supervised learning in a re-
producing kernel Hilbert space (RKHS).

Extensive experiments are conducted to demonstrate the
superior performance of DSSL over a number of state-of-
the-art baselines.

Other Related Work

Limited labeled training data is insufficient to train a good
classifier due to the cold start problem of supervised learn-
ing. Semi-supervised learning approaches are appealing in
practice since they require only a small fraction of labeled
training data with a large amount of easily obtained unla-
beled data (Chapelle, Schlkopf, and Zien 2010; Zhu 2005).
Among existing semi-supervised learning approaches, man-
ifold regularization (Sindhwani, Niyogi, and Belkin 2005)
and wrapping kernels using point cloud (Belkin, Niyogi, and
Sindhwani 2006) are two classic methods, which incorpo-
rates the manifold structure underlying both unlabeled and
labeled data into the learning of Support Vector Machines
(SVMs).
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In the context of activity recognition, Stikic, Larlus,
and Schiele (2009) proposed a multi-graph based semi-
supervised approach named GLSVM, where each graph
propagates different information of activities. Different
graphs are then combined to improve label propagation in
graphs. After that, an SVM classifier is trained by using
both the initially labeled training data and the propagated la-
bels. Matsushige, Kakusho, and Okadome (2015) proposed
a semi-supervised kernel logistic regression method for ac-
tivity recognition, denoted by SSKLR, which extends ker-
nel logistic regression into semi-supervised fashion, and
solves the problem by the Expectation-Maximization al-
gorithm. Yao et al. (2016) proposed a robust graph-based
semi-supervised method named RSAR to tackle the intra-
class variability in activities across different subjects. The
RSAR method extracts the intrinsic shared subspace struc-
tures from activities with the assumption that intrinsic re-
lationships have invariant properties thus are less sensi-
tive with varying subjects. In (Nazabal et al. 2016), a new
Bayesian model is proposed to tackle the scenario with a
very low number of sensors. The dynamic nature of human
activities are further modeled as a first-order homogeneous
Markov chain. Our proposed DSSL is a unified framework
that naturally inherits the spirit of learning from distributions
and manifold learning.

Preliminaries

Support Measure Machines In supervised learning with
distributions, we are given a set of labeled data {X;, y; }7 4,
where X; = {z;;}}2, and n;s may vary across different z;.
The goal is to learn a classifier f to map {X;}’s to {y;}’s. In
SMMs (Muandet et al. 2012), each X; is mapped to a func-
tional in a RKHS ‘A via kernel mean embedding (Berlinet
and Thomas-Agnan 2011) as pp. = Eg,~p, [k(xij, )]
where k(-,-) is a characteristic kernel associated with the
RKHS . It has been proven that if the kernel is character-
istic, then an arbitrary probability distribution P; is uniquely
represented by an element pp, in the RKHS, which implic-
itly captures all orders of statistical moments of X;;.

The inner product, i.e., a linear kernel, of two distribu-
tions, which measures their similarity, can be defined as
(1, pp,) = ﬁ S S k(Xia, X5p). One can also
define a nonlinear kernel of pp, and pp to capture their
nonlinear relationships via

k(ﬂppﬂpj)ﬂ = <¢(Npi)7¢(ﬂpj)>7

where k(-, -) is the nonlinear kernel induced by the nonlinear
feature map 1(-), and H is the corresponding RKHS.

To train a classifier from {X;}’s to {y;}’s, SMMs define
the optimization problem by learning f € # that minimizes
the following regularized risk functional

(D

n

LS e v )+ 20 ).

i=1

2)

where £(-) is the loss function and €2(-) is the regularization
term. Note that H = H if £ is linear.



Random Fourier Features Approximation The kernel
embedding technique of distributions used in SMMs is com-
putationally expensive as it requires to compute kernel ma-
trices. This makes it impractical in some real-world appli-
cations when the size of the dataset is large. To scale up
SMMs, Qian, Pan, and Miao (2018) proposed an accelerated
version using Random Fourier Features to construct an ex-
plicit feature map instead of using the kernel trick. Based on
Bochner’s Theorem (Rahimi and Recht 2007), a continuous,
shift-invariant positive definite kernel k(x,x’) can be lin-
earized by using the randomized feature map z : R — RP

k(x,x') = (6(x), o(x)) ~ z(x) ' 2(x'), (©)

where the inner product of explicit feature maps can uni-
formly approximate the kernel values without the kernel
trick, and the random Fourier features are generated by:

Zw(x) = V2cos(w ' x + D), @)

where w ~ p(w), which is k(-,-)’s Fourier transform dis-
tribution on R”, and b is sampled uniformly from [0, 27]. It
can be proven that k(x,x’) = E(2,(x) " 2,(x')) for all x
and x’. In practice, D can be small, which enables SMMs to
handle large-scale datasets.

The Proposed Methodology
Problem Statement

In our project setting of activity recognition, we are given
a set of [ labeled segments data {X;,y;}._;, and a set of
u = n — [ unlabeled segments {X;}!=}", | as training data
obtained by applying segmentation methods on the raw data,
where X; = [X;1 ... Xjn,] € Ry, € {1,.., L}, | < u,
and n; may vary across different segments. The goal is to
make use of both labeled and unlabeled segments to learn a
classifier from each segment X to its corresponding label y.
Following (Qian, Pan, and Miao 2018), each segment X;,
including both labeled and unlabeled, is treated as a sample
of n; data points drawn from an unknown distribution P;.
Kernel mean embedding is then applied to map each X; to
an element pp, in a RHKS. In practice, to make the learning
process more efficient, random Fourier features are used to
approximate the nonlinear feature map induced by the kernel
of the RKHS via pp, = - >0 7(x;;). where pp, € RP.
Therefore, our goal becomes to learn a classifier f : up —

yi from {H]P‘H Yi}i—, and {H]Pz-}iﬁ-l-

Distribution-based Semi-Supervised Learning

Borrowing the idea from manifold regularization (Belkin,
Niyogi, and Sindhwani 2006) and the technique on warp-
ing data-dependent kernels (Sindhwani, Niyogi, and Belkin
2005), we aim to incorporate the underlying manifold struc-
ture of both labeled and unlabeled data into the learning of
a classifier via warping a RKHS. Spemﬁcally, we wrap the
RKHS A defined in (1) to another RKHS # by leverag-
ing unlabeled training segments or distributions to reflect
the underlying geometry of {1)(up,)}’s. Notations on dif-
ferent kernels and their corresponding RKHSs used in this
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Table 1: Notations of different kernels used in the paper

Kernel | Space | Descriptions
k H kernel mean embedding of distributions
i 17 kernel on the embedded distributions
y v data-dependent kernel constructed based
k H ~ . . .
on k for semi-supervised learning

paper are summarized in Table 1. The new RKHS H is as-
sociated with the new kernel E, which is data-dependent for
semi-supervised learning. We will discuss how to achieve
the kernel as well as the resulting new space later. Here, we
assume the new kernel k is constructed, then the revised op-
timization problem over H is formulated as

l

1
fr=argmin— » Upp,,yi, f
feﬁl; (pp, 1 )

(&)

where £(-) is the loss function. Note the objective function
looks similar to that in the supervised learning setting in (2).
However, in (5) the RKHS, where the functional to be op-
timized is , which is influenced by both labeled and un-
labeled distributions, while the RKHS in (2) is H, which
is defined by labeled distributions only. The new optimiza-
tion probelm raises a potential problem: f is to be learned in

#, while the input space of pp. is H. As these RKHSs are
not the same, how to calculate the loss function remains a
problem. To sum up, in order to solve the optimization prob-
lem (5), three crucial questions need to be answered:

e How to construct the data-dependent kernel k by incorpo-
rating unlabeled training data?

e [s the new space H valid?

e How to calculate the loss function given pp € H and
fe # are not in the same space?

In the following, we investigate the questions one by one.

1) Construction of the Data-dependent Kernel k  Since
unlabeled data may shed light on the underlying structure
and manifolds of all data, now the problem becomes how

to appropriately construct such a valid RKHS H from H to
achieve so. We first define H to be the space of functionals
from H with the following modified inner product:

(f.9)51 = (,9) 57 + (SF. 59)v, ©6)

where V is a linear space and S : 1 — V is a bounded lin-
ear operator. The first term in (6) is the common definition
of inner product between two functionals, while the second
term with the operator S reflects that unlabeled embedded
distributions alter our beliefs in the overall structure. De-

note by f(p) =(f(pp, ), - f(1tp,)), we have (Sf, Sf)y =
f(pu) ME(p) " with M being a positive semidefinite matrix.

2) Validity of 7
Theorem 1. # is a valid RKHS.
A space is valid if it is bounded and complete.



3) Loss Function Calculation Based on Theorem 1, we
have the following propositions.

Proposition 1. 7 = 7.
The two spaces are the same if each of the space is the
subset of the other space. Although the two spaces are the

same, the kernels therein are not identical. However, they are
connected due to the involvement of unlabeled distributions.

Proposition 2. K = (I + KM) 'K, where K with Kj =
(g, pp,) is the kernel matrix for H on pp,’s, and K is
the kernel matrix in the altered space H.

Note that detailed proofs and derivations of theorems and
propositions introduced in this section can be found in the
next section. The complexity of the above kernel seems to be
a potential problem when the data scales up, since it involves
matrix multiplication as well as matrix inversion. However,
when conducting experiments on large scale activity recog-
nition datasets, the problem actually is not severe in practice.
The reason is that the entries of kernels are dependent on the
number of distributions, i.e., number of segments, each con-
taining a repetition of activity, instead of the number of total
instances, i.e., one entry for each timestamp equivalent to
the product of # sample and # instances per sample. Other
feasible solutions to further alleviate this problem include
matrix factorization, low-rank approximation (Bach and Jor-
dan 2005), etc. Data selection or feature selection (Nie et al.
2010) can be conducted on training data beforehand to keep
a small fraction of key training data. The proposed method
can be further developed in an online learning fashion (Hoi,
Wang, and Zhao 2014), so that the matrix are maintained in
a small scale.

Note that the choice of M is crucial regarding how to
properly incorporate unlabeled embedded distributions. In
this paper, we set M to be M = rL?, where r is a scalar
and L = D — W is the Laplacian matrix, which is widely
used in semi-supervised learning (Sindhwani, Niyogi, and
Belkin 2005; Belkin, Niyogi, and Sindhwani 2006) to model
the geometry structure underlying the data. To be specific,

I, —pep H2
Wij = exp (—L z

202
the graph, and D is the diagonal matrix with D;; = > j Wij.
Based on the following Theorem 2 (whose derivations are at
the end of the paper), the solution for the optimization prob-
lem in (5) can be expressed as a linear combination of the

functionals {k(pg,), - }!_; as

) if pup, and pp, are connected in

l
[ (pp) = Zaik(HP7 Bp,)- N
i=1
Theorem 2 (Representer Theorem for the pro-

posed DSSL method). Given [ labeled distributions
{P1,11),.... Pr,y)} € P x R, a loss function
¢ : (P xR%)! — R U {+occ} and a strictly monoton-
ically increasing real-valued function ) on [0,+00), the
minimizer of the regularized risk functional

(P, y1, Ep, [f], -0 Py, B [f]) +Qfly), 8

admits an expansion f = 22:1 ozilvc(u]pi, -), where a; € R,
fori=1,..1
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Detailed Proofs
Proof of Theorem 1 Let’s start with # with the kernel k.
Since H is a complete Hilbert space, and evaluation func-
tionals therein are bounded, ie., VueH, f € H,3 C, €R,
s.t. |f()| < Cull fllz7- Moreover, the bounded operator S is

I3y < D The

bounded by a constant D, i.e., ||S] = sup Wi
fen M

complete H means every Cauchy sequence in the space con-
verges to an element in H. Let (f,,) be a Cauchy sequence
in H converging to f, then Ve >0, 3 an integer N (¢), s.t.

€
V1+ D2

Now let’s turn to H. We need to prove the completeness
of the space first. According to the definition in Eq. (6), we

obtain that for any Cauchy sequence in H,

S Hfm _fn”?;_z +D2||fm —an%
= ||fm_fn||';.2 <V 1+D2||fm_fn||7."[
<\/1+D2X\/ﬁ:e.

Hence H is complete since every Cauchy sequence in H

converges to an element in H. Moreover, H is bounded
based on the property that any Cauchy sequence is
bounded (Berlinet and Thomas-Agnan 2011, Lemma 5).
This completes the proof.

m > N(e), n> N(e) = || fom — [ullg <

Proof of Proposition 1 Firstly, we decompose H to two
orthogonal parts as

7-2 = span{];(NP17 ')a ) ]:;(IJ‘IP’N )} ® ,]:[L7

where HL vanishes at all labeled embedded distributions,

ie., y
VieHie (1,1}, f(pp,) =0. )
Accordingly Sf = 0, which means (f,g);; =
(f,9)7,Vf € HL, g € H. Moreover,
f(ll'LP’) = (f7E3(I1/]P1 ))’).2 = <fvl;(l‘l’]1)7)>’}-_[
= <f7l~€(y']?7 )>7—'¢ + <Sf7 Sé(/"]}"v )>V
= <f7];(l"']1”7)>7:[
Thus, we have
Vf € 1 (F (e, ) — k(pp, )5 = 0. (10)

That is k(pp, ) — k(pp,-) € (HL)L. By substituting (9)

into (10), we obtain k(pp,,-) € (H*)*, Vi, which means

SPG”{%(NPW ')}2:1 - Spa”{]vf(lipia )}5:1 (11)

Secondly, ~we  decompose H as
span{k(pp,,-)}_; ® H*. Similarly, we have

(f, F(pp,, )y =0, Vf € HE, Vie {1,...,1}.

H —



As Sf =0, we have (f,g)7 = (f,9)4.and
f(“‘]P) = <f7 ];(I"']P’: )>7f¢ = <f7 E(“‘]P’» )>7:L
= (f k(pp, Yy + (SF, Sk(pp, )y
= (f, k(pp, )
Therefore, we have (f, k(pp,-) — ( ))7:[ = 0. Since
f e H*, it becomes (f, k(pp,-)) 4 ,ie., k(up,-) €
(HL)*. Therefore, we have
SPGW{E(HPN ‘)}é=1 - span{l;(u]pi, )}lel (12)

Finally, by considering both (11) and (12), we conclude that
the two spans are the same. This completes the proof.

Proof of Proposition 2 Based on Proposition 1, we have

F(pe, ) = k(g ) +ZB] pp)k H[P )

j=1

13)

where the coefficients 3; depend on pp. If we can obtain
the exact formulation for j3;, then we can derive relations
between two spaces by explicit forms. To find j3;, we use a

system of linear equations generated by evaluating l;:(u]pi, )

= (k(pe,,)s k(pe,- >+Zﬁj(up Vr(kp,s)) 5

j=1

Rz, ) + > B (p)k(pz, )z + Ky, Mg,
j=1

(lg(upﬂupl)?

= (k(ng, ),

~T -
where kHPi k(pp,, upn)) and

g consists of components g; %(N]}D,Hpi) +

> LB (p)k (pp,, 1p,). Then we have the fol-
lowing linear equation for the coefficients S(up) =

(B1(pp), oo Br(pp)) T
_MI::N]P’ =

(I + MEK)B(pp)- (14)

Based on (13) and (14), we obtain the following explicit
form for k(-,-):

];(Npiaﬂpj) = k(pp,, 1p,) — ];Im I+ MK)ilM]:?ugf

The above equation can be written in the following concise
matrix form:

K=K-K(I+MK)"'MK. (15)
It can be shown that by applying the Sherman-Morrison-
Woodbury (SMW) identity, (15) can be further rewritten as

K=(I-K(I+MK)~

MK = (I+KM)™'K. (16)

This completes the proof.
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Proof of Theorem 2 Any functional f € H can
be uniquely decomposed into a component f,, in the
space spanned by the kernel mean embedding f,

Zézl oziluc(u]pi, -), and a component f, orthogonal to it, i.e.,

(fL, /;(u]pj, )y =0,Vj € {1,...,1}. Therefore, we have

l
f = fu+fL = Zaifc(p{?iv') +fJ_~

i=1
Thus, for all j, we can further induce that

<Zaz HlP’a )+ f1, (N]P’ﬂ')

i=1

<Zaz NlP’a' 7]::“/113’ 7)>

This indicates the loss function term in (8) does not depend
on f, . Besides, the second term €2(-) in (8) is strictly mono-
tonically increasing, so we have

H>

QI fll) = (
L

=0

Ep,

Zaz H]P’ﬂ +fJ_
i=1

2

Zal Hp, 7'

!
Q( )7
i=1 7

Z aiff(ll’]l]’u )

where the equality holds if and only if f; = 0. Therefore,
the first term in (8) is independent of f, and the second
term reaches its minimum when f; = 0. Consequently, any
minimizer must take the form f = f, = 22:1 aik(pp,, ).
This completes the proof.

Experiments

We conduct experiments on 3 sensor-based activity datasets.
The statistics are listed in Table 2. Skoda records 10 gestures
in car maintenance scenarios with 20 acceleration sensors
being put on the arms of the subject (Stiefmeier, Roggen,
and Troster 2007). Each gesture is repeated around 70 times.
The transitions between two gestures are labeled as Null
class, which are also considered as activities. WISDM uses
accelerometer sensors embedded in the phones to collect
six regular activities: jogging, walking, ascending stairs, de-
scending stairs, sitting and standing (Kwapisz, Weiss, and
Moore 2010). HCI composes of gestures with the hand
describing different shapes: a circle, a square, a pointing-
up triangle, an upside-down triangle, and an infinity sym-
bol (Forster, Roggen, and Troster 2009). Each gesture is
recorded over 50 repetitions, and about 5 to 8 seconds per
repetition. Null class exists as well in HCI dataset.

Experimental Setup

Following the criteria in (Qian, Pan, and Miao 2018), we
adopt both micro-F} score (miF) and weighted macro-F}



Table 2: Statistics of datasets used in experiments.

Datasets # Sample # Instances per sample | # Feature | # Class
Skoda 1,447 68 60 10
HCI 264 602 48 5
WISDM | 389 705 6 6

score (maF) to evaluate the performance of different meth-
ods. All the reported results are the average values together
with the standard deviation over 6 random splits for training
and testing. Each dataset is randomly split into 3 subsets: la-
beled training set, unlabeled training set and test set. Each
subset is set to contain activities of all classes. We set the
ratio to be 0.02:0.1:0.88 and fix » = 100. The impact of dif-
ferentiating r will be discussed later. Different from experi-
mental setups in existing papers that set labeled data’s ratio
to be quite large (Matsushige, Kakusho, and Okadome 2015;
Stikic, Larlus, and Schiele 2009), we deliberately set the la-
beled data’s ratio to be extremely small. Hence, our method
requires fewer labels and thus more practical with regards
to applicability in reality. Evaluations are conducted on the
test set. We adopt RBF kernels for all the kernels used in the
experiments.

Baselines We compare the proposed DSSL method with
the following state-of-the-art methods.

e State-of-the-art supervised methods with various features:

— SVMs (Chang and Lin 2011): as SVM is a vectorial-
based classifier, we use mean, variance, etc to generate
a feature vector for each segment.

SAX-a (Lin et al. 2007) treats data as strings, and
structural features are extracted. We follow the settings
in (Lin et al. 2007) with no dimension reduction. The
parameter alphabet_size range is a € {3,6,9}.
ECDF-d (Hammerla et al. 2013; Pl6tz, Hammerla, and
Olivier 2011) extracts d descriptors from each sensor’s
each dimension. d € {5, 15, 30,45}.

Note that the overall shape and spatial features besides
the mean and variance features are concatenated before
applying the SVM classifier.

o State-of-the-art supervised method based on distributions,
SMM 4 r (Qian, Pan, and Miao 2018).

e (lassic vectorial-based semi-supervised methods:
— LapSVM (Belkin, Niyogi, and Sindhwani 2006) is an
extension of SVM with manifold regularization.
— VTSVM (Chapelle and Zien 2005) is a Transductive
SVM by using gradient descent for training. As this
is a transductive approach rather than a truly semi-

supervised learning approach, we make the test data
available in the training phase of this method.

e State-of-the-art semi-supervised methods specifically de-
signed for activity recognition:

— SSKLR (Matsushige, Kakusho, and Okadome 2015)
is a semi-supervised kernel logistic regression method
with Expectation-Maximization algorithm.
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— GLSVM (Stikic, Larlus, and Schiele 2009) is a multi-
graph method where each graph captures different as-
pects of the activities.

Experimental Results

Overall Experimental Results The experimental results
are presented in Table 3. The proposed DSSL consistently
performs the best on all datasets. DSSL outperforms all the
other methods by 5.6%, 17.7%, and 14.4% respectively on
three datasets in terms of miF. This favorably indicates the
effectiveness of the proposed DSSL. Note that in Table 3, the
performances of the comparison methods on WISDM are
much worse than those on the other two datasets. This may
be due to the data complexity caused by the large number
of subjects in WISDM. On datasets Skoda and HCI, the per-
formance ranking is DSSL. > SMM4r > SVMs ~ ECDF
> SAX, which reveals that 1) distribution-based methods
are more capable of distinguishing different activities; 2)
feature extraction plays an important role and string-based
data representation in SAX is not that proper for activity
data compared to ECDF; 3) with the increase of descriptor
d, the performance of ECDF is increasing in HCI dataset
while decreasing in Skoda and WISDM, meaning ECDF
may be task-dependent. However, note that SMM 4 per-
forms the worst on WISDM dataset, which illustrates that
distribution-based methods are more dependent on the num-
ber of labeled data than vectorial-based methods. This in-
deed reflects the motivation of our proposed method. Never-
theless, DSSL does not suffer from this limitation ascribed to
its semi-supervised fashion. For semi-supervised methods,
the ranking is DSSL > LapSVM ~ GLSVM ~ yyTSVM >
SSKLR, which demonstrates the prevalence of graph-based
methods over logistic regression method for activity data.

Impact of Ratio of Labeled Data To analyze the impact
on the proportion of labeled training data, we conduct ex-
periments on WISDM dataset. We fix the ratio of test data
and unlabeled training data to be 20% and 20% respectively,
and alter the ratio of labeled training data to be {0.02, 0.05,
0.1, 0.3, 0.5, 0.7, 0.9} of the rest 60% data. The results are
depicted in Figure 1(a). DSSL performs the best under all
the ratios. When more labeled training data becomes avail-
able, all methods perform better. Moreover, distributional-
based method (SMM 4 ) has larger performance enhance-
ment than vectorial-based methods, which further verifies
the superiority of learning from distributions.

Impact of Ratio of Unlabeled data We investigate the in-
fluence of unlabeled data by fixing the ratio of labeled train-
ing data and test data to be 1% and 20%, respectively, and
modifying unlabeled training data to be {0.1, 0.3, 0.5, 0.7,
0.9} of the remaining 79% data. Note that supervised meth-
ods (SMM 4 r, SVMs) and transductive methods (7 TSVM)
perform the same under this setting, while the performances
of semi-supervised methods keep increasing with more un-
labeled training data as shown in Figure 1(b).

Impact of parameter » In previous experiments, we fix
r=100. Here we conduct sensitivity test on r. As indicated



Table 3: Experimental results on 3 activity datasets (unit: %).

Methods Skoda HCI WISDM
miF maF miF maF miF maF
SVMs 85.7+1.8 42.5+40.9 | 69.7+9.6 69.61+9.4 41.54£5.2 39.6+£6.8
SAX 3 39.61+6.3 18.7+£2.9 | 36.0+£3.0 34.77+£2.5 34.6+1.4 30.6£1.2
SAX 6 37.246.1 18.6+2.8 | 39.7+7.3 38.4+7.9 34.943.0 30.5+5.0
Vectorial-based supervised SAX 9 40.3+6.5 19.943.2 | 39.8£8.7 37.0+9.2 33.6£2.9 28.8+5.8
ECDE_5 84.24+2.1 41.6+1.0 | 67.74£10.1 67.619.1 42.1+6.3 40.5+7.7
ECDF_15 | 79.8+1.5 39.240.7 | 68.4+104 68.5+9.6 39.4+3.3 36.245.7
ECDF_30 | 72.6£1.2 354403 | 68.6+11.1 68.7+10.5 | 37.7£2.5 32.6+4.9
ECDF 45 | 65.7+£2.5 31.5+1.3 | 68.6+11.4 68.6+10.8 | 36.4t1.4 31.3£3.6
LapSVM | 89.7+2.1 44.6+1.2 | 76.1+4.8 76.3+4.7 40.1+3.8 34.5+3.5
Vectorial-based semi-supervised vTSVM | 85.94+2.7 84.8+2.8 | 754+11.5 755+11.2 | 41.3+5.6 39.4+6.9
SSKLR 254+19.3 12.14£2.5 | 242+17.2 18.14£10.1 | 24.6+17.0 17.3£9.9
GLSVM 89.7+2.1 44.5+1.2 | 75.7+5.8 75.7+5.7 40.4+3.8 33.94+4.0
Distribution-based supervised SMM 4r 93.2+0.9 93.1+1.0 | 82.2+13.4 78.9+18.4 | 20.5+3.3 11.7£3.9
Distribution-based semi-supervised | DSSL 98.8+0.5  98.840.5 | 99.9+0.2 99.9+0.2 | 56.5+£5.1 55.6+5.0
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(a) Varying ratios of labeled data.

(b) Varying ratios of unlabeled data.

(c) Impact of r to the performance.

Figure 1: Performance of DSSL on WISDM under different settings (in miF).

in Fig. 1(c), the performance of DSSL on test data keeps sta-
ble when r € [107%,1]. When 7 becomes larger, the perfor-
mance of DSSL begins to decrease. This observation indi-
cates that r balances the tradeoff between labeled and unla-
beled data. Larger r implies stronger emphasis on unlabeled
data. More importantly, under all different » values, DSSL
consistently outperforms all other methods. Fig. 1(c) shows
the best baseline, i.e., ECDF_5 in WISDM'’s case.
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Figure 2: Impact of D to the performance on WISDM.

Impact on random Fourier feature (RFF) dimension
D We analyze how R-DSSL accelerates DSSL with D-

7705

dimensional explicit statistical features. The experiments are
conducted on a Linux server with Intel(R) Xeon(R) E5-2695
2.40GHz CPU. As shown in Fig. 2, R-DSSL steadily out-
performs the best baseline when D > 2. Note that R-DSSL
performs slightly worse than DSSL due to its approxima-
tion nature, however it requires less computational run time
when D < 8 compared to DSSL.

Conclusion

In this paper, we propose a semi-supervised learning frame-
work, DSSL, for sensor-based activity recognition prob-
lems. The proposed DSSL naturally embeds automatic fea-
ture extraction and classification in a semi-supervised learn-
ing manner. Extensive experiments are conducted on three
activity datasets to demonstrate the superiority of DSSL
compared with a number of state-of-the-art methods.
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